Scaling in tournaments

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling in Tournaments

We study a stochastic process that mimics single-game elimination tournaments. In our model, the outcome of each match is stochastic: the weaker player wins with upset probability q ≤ 1/2, and the stronger player wins with probability 1−q. The loser is eliminated. Extremal statistics of the initial distribution of player strengths governs the tournament outcome. For a uniform initial distributi...

متن کامل

t-Pancyclic Arcs in Tournaments

Let $T$ be a non-trivial tournament. An arc is emph{$t$-pancyclic} in $T$, if it is contained in a cycle of length $ell$ for every $tleq ell leq |V(T)|$. Let $p^t(T)$ denote the number of $t$-pancyclic arcs in $T$ and $h^t(T)$ the maximum number of $t$-pancyclic arcs contained in the same Hamiltonian cycle of $T$. Moon ({em J. Combin. Inform. System Sci.}, {bf 19} (1994), 207-214) showed that $...

متن کامل

Local Tournaments and In - Tournaments

Preface Tournaments constitute perhaps the most well-studied class of directed graphs. One of the reasons for the interest in the theory of tournaments is the monograph Topics on Tournaments [58] by Moon published in 1968, covering all results on tournaments known up to this time. In particular, three results deserve special mention: in 1934 Rédei [60] proved that every tournament has a directe...

متن کامل

Trees in tournaments

A digraph is said to be n-unavoidable if every tournament of order n contains it as a subgraph. Let f (n) be the smallest integer such that every oriented tree is f (n)-unavoidable. Sumner (see 7]) noted that f (n) 2n ? 2 and conjetured that equality holds. HH aggkvist and Thomason established the upper bounds f (n) 12n and f (n) (4 + o(1))n. Let g(k) be the smallest integer such that every ori...

متن کامل

Quadrangularity in Tournaments

The pattern of a matrix M is a (0,1)-matrix which replaces all non-zero entries of M with a 1. There are several contexts in which studying the patterns of orthogonal matrices can be useful. One necessary condition for a matrix to be orthogonal is a property known as combinatorial orthogonality. If the adjacency matrix of a directed graph forms a pattern of a combinatorially orthogonal matrix, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Europhysics Letters (EPL)

سال: 2007

ISSN: 0295-5075,1286-4854

DOI: 10.1209/0295-5075/77/30005